

ISOMETER® isoBAT425

Insulation monitoring device with coupling impedance ZE420 for batteries up to $\,$ DC 500 V $\,$

Software version: D0560

Table of contents

1	General information	6
1.1	How to use the manual	6
1.2	Indication of important instructions and information	6
1.3	Signs and symbols	6
1.4	Service and Support	e
1.5	Training courses and seminars	
1.6	Delivery conditions	
1.7	Inspection, transport and storage	
1.8	Warranty and liability	
1.9	Disposal of Bender devices	8
1.10	Safety	8
2	Function	9
2.1	Intended use	9
2.2	Device features	9
2.3	Functional description	9
2.3.1	ZE420 coupling impedance	10
2.3.2	Measured values	10
2.3.3	Monitoring of the insulation resistance and the system leakage capacitance	1
2.3.4	Undervoltage/overvoltage monitoring	1
2.3.5	Messpulsperiodendauer und Ansprecheigenzeiten	12
2.3.6	Fault diagnosis	13
2.3.7	Error codes	14
2.3.8	Connection monitoring	14
2.3.9	Reset and test	15
2.3.10	Stop mode	17
2.3.11	Start with alarm (S.AL)	17
2.3.12	Measuring and response times	17
2.3.13	Password protection (on, OFF)	18
2.3.14	Fault memory	18
2.3.15	History memory HiS	18
2.3.16	Digital interface	18
3	Installation, connection and commissioning	
3.1	Dimensions	
3.2	Installation	20

3.3	Connection	21
3.4	Commissioning	22
4	Operation	24
4.1	Operating and display elements	24
4.2	Menu overview	
4.3	Displaying measured values	27
4.4	Setting the response values (AL)	28
4.4.1	Setting the response values for monitoring the insulation resistance	28
4.4.2	Setting the response values for undervoltage and overvoltage	28
4.4.3	Response values overview	28
4.5	Configuring fault memory, alarm relays, and interfaces (out)	29
4.5.1	Configuring the relays	29
4.5.2	Assigning the alarm messages to the relays	29
4.5.3	Activating or deactivating fault memory	30
4.5.4	Configuring interface	30
4.6	Setting delay times and self test cycles (t)	31
4.7	Setting device control parameters (SEt)	31
4.8	Reset to factory settings	32
4.9	Showing and deleting the history memory	32
4.10	Querying software version (InF)	32
5	Data access via RS-485 interface	33
5.1	Data access using the BMS protocol	33
5.2	Data access using the Modbus RTU protocol	33
5.2.1	Reading out the Modbus register from the ISOMETER®	33
5.2.2	Writing the Modbus register (parameter setting)	34
5.2.3	Exception code	35
5.3	Modbus register assignment	36
5.3.1	Modbus measured value registers	36
5.3.2	Modbus parameter register	39
5.4	IsoData data string	43
6	Technical data	44
6.1	Technical data isoBAT425	44
6.2	Technical data ZE420	48
6.3	Connection	49
6.4	Standards and certifications	50
6.5	Ordering data	50

6.6 Change log......51

1 General information

1.1 How to use the manual

ADVICE

This manual is intended for qualified personnel working in electrical engineering and electronics! Part of the device documentation in addition to this manual is the enclosed supplement "Safety instructions for Bender products".

ADVICE

Read the operating manual before mounting, connecting and commissioning the device. Keep the manual within easy reach for future reference.

1.2 Indication of important instructions and information

DANGER

Indicates a high risk of danger that will result in death or serious injury if not avoided.

WARNING

Indicates a medium risk of danger that can lead to death or serious injury if not avoided.

CAUTION

Indicates a low-level risk that can result in minor or moderate injury or damage to property if not avoided.

ADVICE

Indicates important facts that do not result in immediate injuries. They can lead to malfunctions if the device is handled incorrectly.

Information can help to optimise the use of the product.

1.3 Signs and symbols

1.4 Service and Support

Information and contact details about customer service, repair service or field service for Bender devices are available on the following website: Fast assistance | Bender GmbH & Co. KG.

1.5 Training courses and seminars

Regular face-to-face or online seminars for customers and other interested parties:

www.bender.de > know-how > seminars.

1.6 Delivery conditions

The conditions of sale and delivery set out by Bender GmbH & Co. KG apply. These can be obtained in printed or electronic format.

The following applies to software products:

'Software clause in respect of the licensing of standard software as part of deliveries, modifications and changes to general delivery conditions for products and services in the electrical industry'

1.7 Inspection, transport and storage

Check the shipping and device packaging for transport damage and scope of delivery. In the event of complaints, the company must be notified immediately, see "www.bender.de > service & support.".

The following must be observed when storing the devices:

1.8 Warranty and liability

Warranty and liability claims for personal injury and property damage are excluded in the case of:

- Improper use of the device.
- Incorrect mounting, commissioning, operation and maintenance of the device.
- Failure to observe the instructions in this operating manual regarding transport, commissioning, operation and maintenance of the device
- Unauthorised changes to the device made by parties other than the manufacturer.
- · Non-observance of technical data.
- Repairs carried out incorrectly.
- The use of accessories or spare parts that are not provided, approved or recommended by the manufacturer.
- Catastrophes caused by external influences and force majeure.
- Mounting and installation with device combinations not approved or recommended by the manufacturer.

This operating manual and the enclosed safety instructions must be observed by all persons working with the device. Furthermore, the rules and regulations that apply for accident prevention at the place of use must be observed.

1.9 Disposal of Bender devices

Abide by the national regulations and laws governing the disposal of this device.

For more information on the disposal of Bender devices, refer to www.bender.de > service & support.

1.10 Safety

If the device is used outside the Federal Republic of Germany, the applicable local standards and regulations must be complied with. In Europe, the European standard EN 50110 applies.

DANGER Risk of fatal injury due to electric shock!

Touching live parts of the system carries the risk of:

- · Risk of electrocution due to electric shock
- Damage to the electrical installation
- · Destruction of the device

Before installing the device and before working on its connections, make sure that the installation has been de-energised. The rules for working on electrical systems must be observed.

2 Function

2.1 Intended use

This ISOMETER® is intended for monitoring the insulation resistance R_F as well as the voltage of a battery during its assembly from individual battery cells. The ISOMETER® monitors the insulation resistance of batteries with nominal system voltages of DC 0...400 V. The maximum permissible system leakage capacitance is 1 μ F. Based on the measured values obtained, it is possible to determine the type and location of an insulation fault.

In order to meet the requirements of the applicable standards, customised parameter settings must be made on the equipment in order to adapt it to local equipment and operating conditions. Please heed the limits of the range of application indicated in the technical data.

Any other use or a use that goes beyond this constitutes improper use.

If the ISOMETER® is installed inside a control cabinet, the insulation fault message must be audible and/or visible to attract attention.

2.2 Device features

- Monitoring of the insulation resistance R_F to earth
- Monitoring of the battery voltage U_n between the terminals "L+" and "L-"
- Configurable measuring frequency for adjustment to the physical characteristics of the battery
- Measuring the DC residual voltages U_{L+e} (between L+ and earth) and U_{L-e} (between L- and earth)
- · Selectable start-up delay, response delay and delay on release
- Alarm output via LEDs ("AL1", "AL2"), display, and alarm relays ("K1", "K2")
- Automatic device self test
- Selectable n/c or n/o relay operation
- · Measured value indication via multi-functional LC display
- · Activatable fault memory
- Locating the faulty conductor L+/L-, i.e. the distribution of the insulation resistance R_F between terminals "I+" and "I-"
- Monitoring and automatic adjustment to the system leakage capacitance C_e up to 4 μF
- Continuous connection monitoring of terminals "L+", "L-" and "E"
- Two separately adjustable response value ranges from $10 \text{ k}\Omega$ to $5 \text{ M}\Omega$ (prewarning, alarm)
- Device supply via wide-range power supply
- RS-485 (galvanically isolated) including the following protocols:
 - BMS (Bender measuring device interface) for the data exchange with other Bender devices
 - Modbus RTU
 - IsoData (for continuous data output)
- Password protection against unauthorised changing of parameters

2.3 Functional description

The isoBAT425 ISOMETER* is intended for monitoring the insulation resistance R_F as well as the voltage U_n of a battery during its assembly from individual battery cells. The ISOMETER* measures the insulation resistance R_F and the system leakage capacitance C_e of the battery to earth. Additionally, it measures the battery voltage U_n between L+ and L-, as well as the residual voltages U_{L+e} (U_{L+} to earth) and U_{L-e} (U_{L-} to earth).

In the first step, the battery is assembled in two parallel strings (plus and minus string) which are not interconnected. During the second step, the two strings are connected to form a complete battery by means of another battery.

The resulting measured values allow diagnosing the type and location of the insulation fault. In the LC display, the faulty conductor is displayed with a plus or a minus sign preceding the value $R_{\rm F}$.

The detected fault is assignable to an alarm relay via the menu. If the values R_F or U_n violate the activated response values in "AL" menu, the LEDs and the alarm relays "K1" and "K2" issue an alarm according to the alarm assignment settings in the "out" menu. In addition, the operating mode of the alarm relay can be set and the fault memory "M" can be activated in this menu.

If the values R_F or U_n do not violate their respective release value (response value plus hysteresis) for the period $t_{\rm off}$ without interruption, the alarm relays will switch back to their initial position and the alarm LEDs will go out. If the fault memory is activated, the alarm relays remain in alarm condition and the LEDs light until the reset button "R" is pressed or the supply voltage U_s is interrupted.

The device function can be tested using the test button "T".

Parameters are assigned to the device via the LCD and the control buttons on the front panel; this function can be password-protected. The parameters of the device can be set via Modbus RTU.

2.3.1 ZE420 coupling impedance

In the case of open battery strings, the ZE420 coupling impedance provides a low-resistance connection (10 k Ω) between terminals "L+" and "L-", necessary for the measuring functions of the ISOMETER®. In the case of closed batteries, the resistance is optional due to the internal resistance of the battery.

In addition to this resistance, there is also a 1.5 mA current limitation. It starts above $U_n = 25$ V and increases the internal resistance of the coupling impedance. For this reason, in the event of a cross fault, the system connection monitoring may be additionally triggered but, at the same time, the responsivity of the cross fault detection is increased.

In addition, the coupling impedance contains two capacitances for a necessary minimum leakage capacitance to earth.

2.3.2 Measured values

Parameters measured by the ISOMETER®

Parameter	Description	Unit
R _F	Isolationswiderstand gegen Erde	kΩ
U _n	DC system voltage between L+ and L-	V
U _{L+e}	DC residual voltage between L+ and earth	V
U _{L-e}	DC residual voltage between L— and earth	V
Faulty conductor	Distribution of the insulation resistance $R_{\rm F}$ between terminals "L+" and "L-". In the LC display, the fault location is marked with a plus or a minus sign preceding the value $R_{\rm F}$.	%

Measured value ranges and resolution

Value	Interface	Value range		Resolution
	LCD	1 kΩ	999 kΩ	1 kΩ
R	LCD	1.0 ΜΩ	10.0 ΜΩ	0.1 ΜΩ
, n	BMS	1 kΩ	20000 kΩ	1 kΩ
	Modbus, IsoData	1 kΩ	20000 kΩ	1 kΩ
	LCD		±99.9 V	0.1 V
U	LCD	±100 V	±500 V	1 V
	BMS	0 V	500 V	1 V
	Modbus, IsoData	0 V	±500 V	0.1 V
	LCD	0 nF	999 nF	1 nF
С	LCD	1.00 µF	9.99 μF	0.01 μF
	BMS	0 nF	9990 nF	1 nF
	Modbus, IsoData	0 nF	9990 nF	1 nF

2.3.3 Monitoring of the insulation resistance and the system leakage capacitance

The insulation resistance $R_{\rm F}$ as well as the system leakage capacitance $C_{\rm e}$ to earth are measured. The results are the total values from the sub-components $R_{\rm F1} \mid\mid R_{\rm F2}$ as well as $C_{\rm e1} + C_{\rm e2}$. The system leakage capacitance value $C_{\rm e}$ is only updated above $R_{\rm F} = 10~{\rm k}\Omega$.

When the insulation resistance R_F reaches or falls below the threshold values R1 (prewarning) or R2 (alarm), an alarm message is issued. Parameters R1 and R2 can be found in the response value menu "AL" (see "Response values overview", page 28). If by means of the measured voltages the faulty conductor can be assigned to the plus or the minus string, only the corresponding "L+" or "L–" alarm will be issued. Otherwise, both alarms are issued together.

The system leakage capacitance C_e is monitored on its compliance with the maximum permissible value for the ISOMETER®. If the measured value of the system leakage capacitance C_e exceeds 4 μ F, the device error "E.07" with the alarm message "Device error" is issued.

The measurement method requires a low-resistance connection between terminals "L+" and "L-". If the battery strings are still separated from each other, the connection will be established via the coupling impedance ZE420. The 12 k Ω internal resistance of the coupling impedance is included in the measured value $R_{\rm F}$. If $R_{\rm F}$ is below 100 k Ω , a measured value deviation of approx. +2 k Ω must be expected. If the battery strings are connected to form a complete battery, the internal resistance of the battery establishes the low-resistance connection and the deviation due to the coupling impedance is omitted.

2.3.4 Undervoltage/overvoltage monitoring

The nominal system voltage U_n is 400 V. With an overvoltage of 25 %, a maximum of 500 V are permissible. The DC system voltage U_n is measured in V and V_{RMS} . The root-mean-square value is a true RMS value and is only required for overload detection (over range) of the system coupling. In addition, the DC residual voltages U_{L+e} as well as U_{L-e} to earth are determined. The voltage values on the LC display and the interface are averaged

to improve the resolution and are time-delayed. The comparators of the system voltage monitoring use the non-delayed, non-averaged system voltage. Therefore, minor deviations between the response of the voltage monitoring and the indicated voltage value are possible.

The parameters (U1<, U1>, U2< and U2>) for monitoring the system voltage U_n can be set in the response value menu "AL" (see "Setting the response values (AL)", page 28). The maximum undervoltage value is limited by the overvoltage value. If the nominal system voltage U_n reaches, falls below or exceeds the limit values (U< or U>), an alarm will be signalled. The alarm will be deleted when the threshold values plus hysteresis are no longer violated.

The image below shows the operating mode of the voltage comparators with the resulting messages.

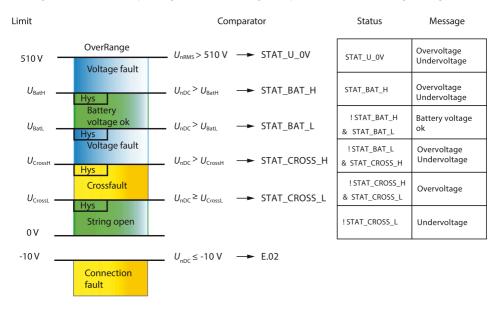


Figure 2-1: Voltage monitoring limits

2.3.5 Messpulsperiodendauer und Ansprecheigenzeiten

In the "sEt" menu, the measuring pulse period duration TMP can be configured with the parameter "t $\Box \Box$ ". The maximum operating times t_{ae} (see "Measuring and response times", page 17) of the monitoring of the insulation resistance R_F , the cross fault R_C as well as the connection to earth (E.01) and the battery (E.02) depend on it. The modifiable measuring pulse period duration allows adjusting the ISOMETER® to the insulation behaviour of the battery.

Measuring pulse period durations which are marked with the "auto" symbol switch automatically to the longest measuring pulse period duration as long as the message "Battery voltage U_n is ok" is indicated. The following table shows the maximum operating times t_{ae} for the different alarms and measuring pulse period durations T_{MP} .

T _{MP}	R _F	R _C	E.01	E.02
0.8 s	3.5 s	3.0 s	2.1 s	6.0 s
2.0 s	8.0 s	3.0 s	2.1 s	6.0 s
4.0 s	16.0 s	3.0 s	2.1 s	15.0 s**
8.0 s	32.0 s	3.0 s	2.1 s	30.0 s*

^{*} The value only applies to C_{e1} or $C_{e2} > 400$ nF. Below this value, the absence of just one system connection is not reliably detected.

2.3.6 Fault diagnosis

2.3.6.1 Insulation fault to earth

The displayed value R_F of the ISOMETER® is the total insulation resistance R_F to earth. The polarity and the amount of residual voltages U_{L+e} and U_{L-e} are an indicator of insulation fault location.

If the battery strings are not interconnected yet, the residual voltages U_{L+e} and U_{L-e} are almost identical and the nominal battery voltage U_n is about 0 V, it is very likely that the insulation fault is only located in one string. The polarity of the residual voltages marks the affected string. The affected battery cell can be calculated by means of the residual voltages U_{L+e} or U_{L-e} and the ISOMETER® internal resistance $R_i = 120 \text{ k}\Omega$:

$$U_{\text{cell}} = U_{\text{Lxe}} \times (1 + R_{\text{F}} / R_{\text{i}})$$

If there is an additional insulation fault in the other string, determining the cell is almost impossible, since several variables, depending on location and size of the insulation fault, determine the residual voltages. If the battery strings are connected to form a complete battery, the measured value "Fault location%" indicates the fault location. Clear assignment is only possible in the event of a single insulation fault. The value can range between -100% and +100%. The sign indicates the string affected. When the fault is located in the middle of the battery, the fault location is 0%.

2.3.6.2 Insulation fault between the battery strings (cross fault)

The insulation fault $R_{\rm C}$ (cross fault) creates a connection between the unconnected strings and has no connection to earth. It can be detected via the $U_{\rm n}$ value of the voltage measurement. If $U_{\rm n}$ reaches or exceeds the comparator value $U_{\rm CrossI}$, the overvoltage alarm is activated.

Depending on the fault location of the insulation fault $R_{\rm C}$, an unloaded voltage on the same level as the voltage in a battery cell up to the maximum voltage of the series connection of both battery strings can occur. $R_{\rm C}$ directly at the coupling points is not detectable due to the absence of voltage. Since the coupling impedance contains a current-limited resistance of 10 k Ω , which is connected in parallel to the series internal resistance of 240 k Ω of the ISOMETER®, the nominal system voltage $U_{\rm n}$ resulting from the insulation fault $R_{\rm C}$ is loaded with this resistance. For $R_{\rm C} > 10$ k Ω , exceeding half the voltage of a battery cell can be considered as lower limit for the fault detection.

Note that the internal resistance of the coupling impedance is only linear up to approx. 1.5 mA and from then on limits the current to this value. In connection with the non-linear internal resistance of the coupling impedance, in case of high-resistance values of $R_{\rm C}$ the device error / coupling error "E.02" can occur simultaneously with the overvoltage alarm.

^{**} The value only applies to one-sided R_f ≤ 1.5 MΩ. Above this value, the absence of just one system connection is not reliably detected.

2.3.6.3 Battery voltage

The system voltage U_n is monitored with the voltage comparators described above. The insulation fault $R_{\mathbb{C}}$ between the unconnected strings as well as the completion of the battery can be detected via these comparators.

2.3.7 Error codes

In the event of a device error the display shows the respective **error code**.

Overview of some error codes

Error code	Meaning
E.01	PE connection error The connection of "E" or "KE" to earth is interrupted. Action: Check connection, eliminate error. The error code will be erased automatically once the error has been eliminated.
E.02	System connection error The internal resistance of the system is too high or the connection of "L+" or "L-" to the system is interrupted. The terminals "L+" and "L-" are connected incorrectly. Action: Check connection, eliminate error. The error code will be erased automatically once the error has been eliminated.
E.05	Measurement error Due to system interferences or a device error, the insulation measured value is no longer updated. Prewarning and alarm are set for the insulation measured value at the same time. Calibration invalid after software update "E.05" appears together with "E.08": The software is not compatible to the calibration of the device. Action: Install the previous software version or have the device calibrated at the factory.
E.07	Permissible system leakage capacitance $C_{\rm e}$ exceeded The device is not suitable for the present network leakage capacitance $C_{\rm e}$. Action: Uninstall the device.
E.08	Calibration error Action: Check connection, eliminate error. If the error is still present, there is a device error.

Internal device errors "E.xx" can be caused by external disturbances or internal hardware errors. If the error message occurs again after the device has been restarted or after a reset to the factory settings (menu item "FAC"), the device must be repaired. After the fault has been eliminated, the alarm relays switch back either automatically or when the reset button is pressed. The self test can take a few minutes.

2.3.8 Connection monitoring

E-KE monitoring

The E-KE monitoring checks the connection between terminals "E" and "KE" and thereby ensures the connection to earth of the ISOMETER® and the battery enclosure. An error is reported with the code **E.01** and device error. It operates constantly in the background and does not affect the measuring function of the device.

System connection monitoring

The system connection monitoring monitors the connection of terminals "L+" and "L-" to the battery by means of the coupling impedance ZE420. An error is reported with the code **E.02** and device error. The monitoring requires a resistance smaller than $12 \text{ k}\Omega$ and a system leakage capacitance C_e larger than 80 nF between terminals "L+" and "L-". In the case of separated battery strings, the coupling impedance ensures that these minimum requirements are fulfilled. In the case of closed battery strings, the battery provides the required connection between "L+" and "L-" with its low-ohmic internal resistance. The system connection monitoring operates constantly in the background and does not influence the measuring function of the ISOMETER®.

Above a measuring pulse period duration of 2 s, a missing connection to "L+" or "L-" is only reliably detected under the conditions specified in chapter "Messpulsperiodendauer und Ansprecheigenzeiten", page 12.

The system connection monitoring can be deactivated with the "nEt" parameter in the "SEt" menu. See chapter "Setting device control parameters (SEt)", page 31.

2.3.9 Reset and test

2.3.9.1 External test/reset input and stop mode

The fault memory ("M") is deleted by briefly connecting (0.2 s < t < 1.5 s) the terminal "T/R" to earth (terminal "E"). If the connection time exceeds 1.5 s, the manual self test starts. If the terminal "T/R" is still connected to earth after the device self test has been completed, the ISOMETER $^{\circ}$ changes to stop mode ("StP" indication on the display) and the measuring function is deactivated.

2.3.9.2 Reset

The following options trigger a reset:

- Briefly pressing (0.2 s < t < 1.5 s) the external "T/R" button.
 If the button is held (t > 1.5 s), a test follows the reset.
- Pressing and holding (t > 1.5 s) the "R" button.
- Sending a reset command via the interface.
- · Activating stop mode.

In doing so, alarms that are no longer active are deleted from the fault memory.

2.3.9.3 Manual self test

During a manual self test (duration approx. 30 s), the measuring functions of the ISOMETER® are deactivated.

During the test, the "AL1" and "AL2" LEDs are lit, the message "tES" appears on the display and all self-test functions described in the self-test section are carried out. An alarm which makes the LEDs flash overrides the lighting of the LEDs.

The manual self test can be triggered as follows:

Holding the external "T/R" button (>1.5 s):

- A reset is carried out before the test so that alarms which are no longer active are deleted from the fault memory.
- The LCD shows "tES" and "CAL".

Holding the "T" button (>1.5 s):

- The LCD shows all elements as long as this button is pressed, afterwards "tES" flashes.
- A reset is carried out after the test.

Sending a test command via the interface (COM):

- The LCD shows "tES" and "CAL".
- A reset is carried out after the test.

If triggering via the "T/R" button, the alarms remain active during the test (except the "Device fault" alarm). In addition, the message "test" switches the alarm relays if it is assigned to the alarm relays in the "out" menu. After the manual self test, which can only be exited when exiting the stop mode, the message "test", which may be displayed, will also be deleted from the fault memory.

2.3.9.4 Automatic self test

During an automatic test (duration approx. 30 s), the measuring functions of the ISOMETER® are deactivated. In the "t" menu (see chapter 4.6) the parameter "test" can be used to set the repetition time for an automatic test. If this timer is the trigger, only the message "tES" will be indicated on the display. No alarm is issued via the LEDs, the alarm relays or the interface. No reset is carried out.

A manual self test resets the timer for the automatic self test.

2.3.9.5 Self test

The ISOMETER® has the following self test functions:

- Checking the operating system (background test)
- Checking the connection of terminals "E" and "KE" to earth (background test, continuous)
- System connection monitoring (background test, continuous)
- · Checking the function of the measuring equipment

Some of the self-test functions are executed constantly or time-controlled in the background, others are only executed on request.

The following sources can request a self-test:

- "T" button on the ISOMETER®
- External "T/R" button
- Serial interface
- Timer for automatic self test, configurable with the "test" parameter in the "t" menu
- Device start when "S.Ct" parameter = on (in the "SEt" menu)

During a self test started by one of the sources named above, the measuring function is temporarily deactivated. The background tests do not influence the measuring function.

2.3.9.6 Checking the operating system

The operating system check includes:

- · Check sum verification of the program memory
- Error-free program sequence with stack check
- Parameter values check
- uC initialisation check

The μ C initialisation check is run at least every 5 min. The data RAM memory, the check sum of the program memory and the content of the parameter memory are checked at least once an hour. These tests run in the background and do not influence the measuring function of the ISOMETER*.

2.3.10 Stop mode

The stop mode stops the measuring functions of the ISOMETER*. The measuring pulse voltage is 0 V and the input resistance of the system coupling has a high resistance. The LCD displays the message "StP". The message "test" is set and all other messages are deleted.

The stop mode can be started by permanently closing the external "T/R" button or via the interface and ends when opening the "T/R" button or by releasing it via the interface. The control of the stop mode via the "T/R" button and the interface is an OR operation.

When the stop mode ends, a waiting time (2 s) starts so that the measured value recording settles before new threshold value comparisons are allowed.

If the ISOMETER® starts with an alarm ("out" menu, alarm assignment "S.AL" set to "on") the released alarms are set and the measured resistance values are reset to their initial value. **The alarm assignment S.AL (i.e. Start with an alarm) should be set identically for both alarm relays.** When operating without "S.AL", no alarms are set and the ISOMETER® starts with the maximum measured resistance value.

2.3.11 Start with alarm (S.AL)

The S.AL function allows a device start with set alarm messages. This function is activated in the "out" menu, in the alarm relay alarm assignments "r1" and "r2" by means of the parameter "S.AL". For useful operation with this function, both alarm relays should have "S.AL" activated and operate in n/c mode.

If "S.AL" is activated during device start, all alarms of the released threshold value comparisons are set and the measured resistance values are initialised with 0 Ω . The alarms of the individual threshold value comparisons remain set until the respective measured value has reached the GO-state. No hysteresis is taken into account and the alarms do not remain stored in the fault memory.

A measured value that reaches the GO-state after the device has started triggers the history memory in case of a previous threshold value violation and the alarm remains stored in the fault memory.

2.3.12 Measuring and response times

The measuring time is the period essential for the detection of the measured value. The measuring time is reflected in the operating time t_{ae} . For the insulation resistance measured value, it is mainly determined by the necessary measuring pulse duration, which depends on the insulation resistance R_F and the system leakage capacitance C_e of the system to be monitored. The measuring pulse is generated by the measuring pulse generator integrated in the ISOMETER*. The measuring times for C_e , U_{L-e} , U_{L-e} and R % are synchronous.

System disturbances may lead to extended measuring times. In contrast, the time for the system voltage measurement U_n is independent and considerably shorter.

Operating time t_{ae}

The operating time t_{ae} is the time required by the ISOMETER® to determine the measured value. The insulation resistance measured value depends on the insulation resistance R_F and the system leakage capacitance C_e .

Response delay ton

The response delay $t_{\rm on}$ is set uniformly for all alarm messages in the "t" menu using the parameter "ton", while each alarm message specified in the alarm assignment has its own timer for $t_{\rm on}$. This delay can be used for interference suppression in the case of short measuring times.

An alarm message will only be signalled when a limit value of the respective measured value is violated for the duration of t_{on} . Each time the limit value is violated within the time t_{on} , the response delay "ton" restarts.

Total response time t_{an}

The total response time $t_{\rm an}$ is the sum of the operating time $t_{\rm ae}$ and the response delay $t_{\rm on}$.

Delay on release toff

The delay on release t_{off} can be set uniformly for all alarm messages using the parameter "toff", while each alarm message specified in the alarm assignment has its own timer for t_{off}.

An alarm message will be signalled until the limit value of the respective measured value is no longer violated (including hysteresis) for the duration of $t_{\rm off}$ without interruption. Each time a limit value is no longer violated during $t_{\rm off}$, the delay on release "toff" restarts.

Start-up delay t

After connecting the supply voltage U_S , the alarm output is suppressed for the time set in parameter "t" (0...10 s).

2.3.13 Password protection (on, OFF)

If password protection is activated (on), settings can only be made after entering the password (0...999). For its activation, see chapter 4.7.

2.3.14 Fault memory

Disabled (OFF)

The LEDs and relays signal the fault as long as it is detected.

Enabled (ON)

The LEDs and relays signal the fault until a reset is performed or the supply voltage U_s is disconnected.

2.3.15 History memory HiS

The history memory saves exclusively the measured values for the first fault. The history memory must first be cleared before new measured values can be saved.

The values checked in the table in section "Displaying measured values", page 27 can be saved.

2.3.16 Digital interface

The ISOMETER® uses the serial hardware interface RS-485 with the following protocols:

BMS

The BMS protocol is an essential component of the Bender measuring device interface (BMS bus protocol). Data transmission generally makes use of ASCII characters.

Modbus RTU

Modbus RTU is an application layer messaging protocol, and it provides master/slave communication between devices that are connected via bus systems and networks. Modbus RTU messages have a 16-bit CRC (cyclic redundant checksum), which guarantees reliability.

IsoData

The ISOMETER® sends an ASCII data string with a cycle of approximately 1 second. Communication with the ISOMETER® in this mode is not possible, and no additional sender may be connected via the RS-485 bus cable. The ASCII data string for the ISOMETER® is described in chapter 5.4.

The IsoData protocol can be terminated by sending the command "Adr3" during a transmission pause of the ISOMETER®

The parameter address, baud rate and parity for the interface protocols are configured in the "out" menu.

With "Adr = 0", the menu entries baud rate and parity are not shown in the menu and the IsoData protocol is activated.

With a valid bus address (i.e. not equal to 0), the menu item "baud rate" is displayed in the menu. The parameter value "---" for the baud rate indicates the activated BMS protocol. In this case, the baud rate for the BMS protocol is set to 9600 baud. If the baud rate is set unequal to "---", the Modbus protocol with configurable baud rate is activated.

3 Installation, connection and commissioning

3.1 Dimensions

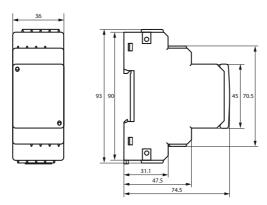


Figure: Dimension diagram (in mm)

3.2 Installation

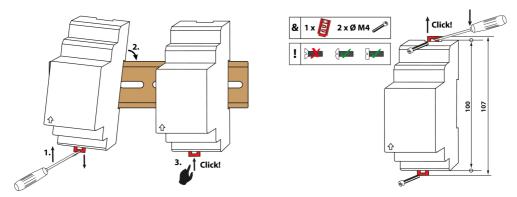


Figure: DIN rail mounting (left) or screw mounting (right)

3.3 Connection

DANGER Risk of fatal injury due to electric shock!

Touching live parts of the system carries the risk of:

- Risk of electrocution due to electric shock
- · Damage to the electrical installation
- · Destruction of the device

Before installing the device and before working on its connections, make sure that the installation has been de-energised. The rules for working on electrical systems must be observed.

For details about the conductor cross sections required for wiring, refer to chapter "6 Technical data".

Wiring diagram

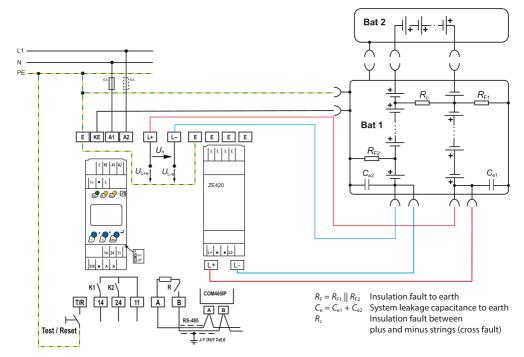


Figure: Anschlussbild

Legend to wiring diagram

Terminal	Connections	
A1, A2	Connection to the supply voltage U_s via fuse (line protection): If supplied from an IT system, protect both lines by a fuse.*	
E	Connection to PE: Use same wire cross section as for "A1", "A2".	
KE	Connection to the battery enclosure	
L+, L-	Connection to the battery to be monitored Indication in display: "L1" for L+; "L2" for L-	
T/R	Connection for the external combined test and reset button	
11, 14	Connection to alarm relay "K1"	
11, 24	Connection to alarm relay "K2"	
А, В	RS-485 communication interface with connectable terminating resistor Example: Connection of a BMS Ethernet gateway COM465IP	

* For UL applications:

Use 60/75 °C copper lines only!

For UL and CSA applications, connect the supply voltage U_s via 5 A fuses.

3.4 Commissioning

- 1. Check that the ISOMETER® is properly connected to the system to be monitored.
- 2. Connect supply voltage U_s to the ISOMETER®.

The device carries out a calibration, a self test and adjusts itself to the IT system to be monitored. With high system leakage capacitances this process may take up to 30 s. The standard display then appears showing the present insulation resistance, e.g.:

The pulse symbol \prod signals an error-free update of the resistance and capacitance measured values. If the measured value cannot be updated due to disturbances, the pulse symbol will be blanked.

- 3. **Start a manual self test** by pressing the test button "T" > 1.5 s. While holding the test button all available display elements are shown. After releasing the button, the test starts and "tES" flashes for the duration of the test. Detected malfunctions are displayed as error codes (see chapter 2.3.7).
 - The alarm relays are not checked during the test (factory setting). The setting can be changed in the "out" menu so that the relays switch to the alarm state during the manual self test.
- 4. Check if the settings are suitable for the system being monitored.

The list of factory settings is shown in the tables from chapter 4.4.

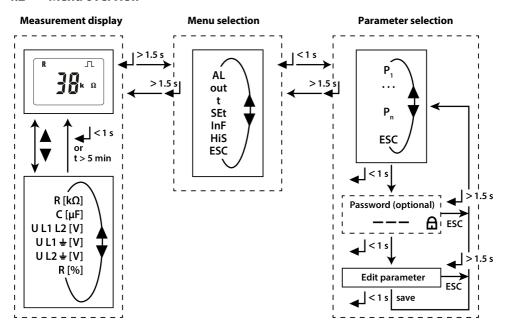
5. Check the functionality by a real insulation fault.

Use a suitable resistor to check the ISOMETER® against earth in the system being monitored.

4 Operation

4.1 Operating and display elements

Device front	Operating elements	Function
	ON	Power LED
ON ALI ALZ	AL1 AL2	Alarm LEDs (For codes see "Assigning the alarm messages to the relays", page 29.)
	AV	Up and down buttons - For navigating up or down in the menu settings. - For increasing or decreasing values.
	Т	Test button (press > 1.5 s)
	R	Reset button (press > 1.5 s)
T R MENU	↓	Enter button - Select menu item. - Save value.
	MENU	MENU button (press > 1.5 s) - Starts menu mode. - Exits menu item without saving changes.


Display	Display elements	Function
	U	System voltage U _n
	R	Insulation resistance R _F
	С	System leakage capacitance C _e
	L1 L2 ↓	Monitored conductors L1 = L+ L2 = L-
	=	Voltage type DC
	Л	Pulse symbol: error-free measured value update
UIRZC L1L2 ÷ \(\sum_{\lambda}\)		Voltage type AC
C auto PunFHz KMΩ% mVAs test on off M Adr	°C μ n F Hz k M Ω % m V A s	Measured values and units
(test offort Windu Diam)	0	Password protection is activated
	上	In the menu mode, the operating mode of the respective alarm relay is displayed.
	Adr	Communication interface with measured value: isoData operation
	M	Fault memory is activated
	test on off	Condition symbols
	> + <	Identification for response values and response value violation

The display parameters that can be configured flash.

Depending on the ISOMETER®'s scope of functions, not all display elements are used.

4.2 Menu overview

Menu item	Parameter		
AL	Querying and setting response values		
out	Configuring fault memory, alarm relays and interface		
t	Setting delay times and self test cycles		
SEt	Setting device control parameters		
InF	Querying software version		
HiS	Querying and clearing the history memory		
ESC	Going to the next-higher menu level		

4.3 Displaying measured values

Overview

HiS	Display	Description
/	± R kΩ 	Insulation resistance $R_{\rm F}$ 1 k Ω 10 M Ω For $R_{\rm F} < 5$ M Ω , "+" or "-" $R_{\rm F}$ indicate as mainly on L+ or L- when fault location > 20 % or strings are open and $ U_{\rm L+e} + U_{\rm L-e} \ge 5$ V.
✓	C μF Γ	System leakage capacitance $C_{\rm e}$ 1 nF 9.99 $\mu{\rm F}$ No update when $R_{\rm F}$ is < 10 k Ω .
✓	± U L1 L2 V	System voltage <i>U</i> _n (L+ - L-) DC 0500 V
✓	± U L1 - = V	Residual voltage U _{L+e} (L+ - PE) DC 0500 V
1	± U L2 = V	Residual voltage U _{L-e} (L PE) DC 0500 V
1	± R %	Fault location in % $-100 \% \ldots +100 \%$ This value is indicated in the range of the correct total battery voltage and is only valid for external errors which are directly applied to the plus or minus connections of the complete battery. $R_{f_+} = (200 \% \times R_f) / (100 \% + x \%)$ $R_{f} = (200 \% \times R_f) / (100 \% - x \%)$

[✓] The measured value is displayed in the history memory.

Displaying the current measured values

The standard display shows the currently measured value for R_F . Press the up or down buttons to display the other measured values. After 5 min at the latest the display switches back to the standard display.

ADVICE

The pulse symbol indicates a currently measured value. If this symbol does not appear, the measurement is still ongoing and the latest valid measured value will be displayed. The symbols "<" or ">" will be displayed additionally to the measured value when a response value has been reached or violated, or the measured value is below or above the measuring range.

4.4 Setting the response values (AL)

4.4.1 Setting the response values for monitoring the insulation resistance

How to proceed

- 1. Open menu "AL".
- 2. Select parameter "R1" for prewarning or parameter "R2" for alarm.
- 3. Set value and confirm with Enter.

4.4.2 Setting the response values for undervoltage and overvoltage

How to proceed

- 1. Open menu "AL".
- Select parameter "U<" for undervoltage or parameter "U>" for overvoltage.
- 3. Set value and confirm with Enter.

4.4.3 Response values overview

Display	Activation		on Setting value		Description	
	FAC	Cs	Range	FAC	Cs	
R1 <	on	not adjustable	R2 5000	1500	kΩ	Prewarning value R_{an1} Hys. = 25 % / min. 1 kΩ
R2 <	on	not adjustable	10 R1	1000	kΩ	Alarm value R_{an2} Hys. = 25 % / min. 1 k Ω
U1 <	on	not adjustable	U1> 500	450	V	Battery voltage ok <i>U</i> _{BatH} Hys. = 5 % / min. 5 V
U1 >	on	not adjustable	3 U1<	385	V	Battery voltage ok <i>U</i> _{BatL} Hys. = 5 % / min. 5 V
U2 <	on	not adjustable	U2> 500	385	V	Cross fault <i>U</i> _{CrossH} Hys. = 5 % / min. 2 V
U2 >	on	not adjustable	3 U2<	3	V	Cross fault <i>U</i> _{CrossL} Hys. = 5 % / min. 2 V

FAC Factory settings Cs Customer settings

4.5 Configuring fault memory, alarm relays, and interfaces (out)

Call up menu "out" to configure fault memory, alarm relays, and interfaces.

4.5.1 Configuring the relays

	Relay K1			Relay K2		Description
Display	FAC	Cs	Display	FAC	Cs	
<u> </u>	n/c		_ / _2	n/c		Relay operating mode n/c or n/o

FAC Factory settings

Cs Customer settings

4.5.2 Assigning the alarm messages to the relays

The "on" setting assigns an alarm message to the respective relay. The LED indication is directly assigned to the alarm message and is not related to the relays.

In the event of an unsymmetrical insulation fault, only the alarm message corresponding to the assigned conductor (L+ or L-) will be displayed.

K1	"r1"		K2	"r2"		LEDs			Description
Display	FAC	Ke	Display	FAC	Ke	ON	AL1	AL2	
1 Err	on		2 Err	off		0	0	0	Device error E.xx
r1 +R1 < Ω	off		r2 +R1 < Ω	on			0		Prewarning R1 Fault R _F at L+
r1 -R1 < Ω	off		r2 -R1 < Ω	on			0		Prewarning R1 FaultR _F at L–
r1 +R2 < Ω	off		r2 +R2 < Ω	on			0		Alarm R2 Fault $R_{\rm F}$ at L+
r1 -R2 < Ω	off		r2 -R2 < Ω	on			0		Alarm R2 Fault $R_{\rm F}$ at L $-$
r1 U < V	off		r2 U < V	off			0	0	Alarm <i>U</i> _n Undervoltage
r1 U > V	off		r2 U > V	on			0	0	Alarm <i>U</i> _n Overvoltage
r1 U V	off		r2 U V	off				0	Message battery voltage U_n is ok
r1 test	off		r2 test	off					Manually started device test

K1	"r1"		K2	"r2"			LEDs		Description
Display	FAC	Ke	Display	FAC	Ke	ON	AL1	AL2	
r1 S.AL	off		r2 S.AL	off					Device start with alarm

FAC Factory settings

Ke Customer settings

○ LED off

LED flashes

LED on

4.5.3 Activating or deactivating fault memory

Display	FAC	Cs	Description
М	off		Memory function for alarm messages (fault memory)

FAC Factory settings

Cs Customer settings

4.5.4 Configuring interface

Display Setting value				Description	
	Range	FAC	Cs		
Adr	0/390	3	()	Bus Adr.	Adr = 0 deactivates BMS as well as Modbus and activates isoData with continuous data output (115k2, 8E1)
Adr 1	 1.2k115k	115k	()	Baud rate	"": BMS bus (9k6, 7E1) "1.2k" … "115k": Modbus (variable)
Adr 2	8E1 8o1 8n1 8n2	8E1	()	Modbus	8E1 - 8 data bits, even parity, 1 stop bit 8o1 - 8 data bits, odd parity, 1 stop bit 8n1 - 8 data bits, no parity, 1 stop bit 8n2 - 8 data bits, no parity, 2 stop bits

FAC Factory settings

Cs Customer settings

() Customer setting that is not modified by FAC.

4.6 Setting delay times and self test cycles (t)

Open menu "t" to configure the times.

Display	Setting value			Description
	Range	FAC	Cs	
t	010	0	s	Start-up delay when starting the device
ton1	099	0	s	Response delay K1
ton2	099	0	s	Response delay K2
toff	099	0	s	Delay on release K1 and K2
test	OFF/1/24	OFF	h	Repetition time for device test

FAC Factory settings Cs Customer settings

4.7 Setting device control parameters (SEt)

Open menu "SEt" to configure the device control.

Display	Activ	ation	Setting value		ie	Description
	FAC	Cs	Range	FAC	Cs	
Ð	off		0999	0		Password for parameter setting
t√L			auto 0.8 auto 2.0 0.8 2.0 4.0 8.0	2.0	s	Measuring pulse period duration auto: change to the period duration 8.0 s with the message "Battery voltage U_n is ok".
nEt	on					System connection test
S.Ct	on					Device test at device start
FAC						Restore factory settings
SYS						For Bender Service only

FAC Factory settings Cs Customer settings

4.8 Reset to factory settings

All settings with the exception of the interface parameters are reset to the factory settings.

- 1. Press MENU button (> 1.5 s).
- 2. Go to "SEt" and confirm with Enter.
- 3. Go to "FAC" and confirm with Enter.

4.9 Showing and deleting the history memory

ADVICE

The history memory saves the measured values for the first fault only. To this end, the history memory must be empty.

Show history memory

Call up "HiS" menu and go up or down.

Delete history memory

Call up "HiS" menu, go to "Clr" and confirm.

4.10 Querying software version (InF)

The software version is displayed as a ticker. Afterwards it can be output step by step using the up or down buttons.

How to proceed

- 1. Press MENU button (> 1.5 s).
- 2. Go to "InF" and confirm with Enter.
- 3. If necessary, use up or down buttons to display it step by step.

5 Data access via RS-485 interface

5.1 Data access using the BMS protocol

The BMS protocol is an essential component of the Bender measuring device interface (BMS bus protocol). Data transmission generally makes use of ASCII characters.

BMS channel no.	Operation value	Alarm
1	R _F	Prewarning R1
2	R _F	Alarm R2
3	C _e	
4	U _n	Undervoltage
5	U _n	Overvoltage
6		Connection fault, earth (E.01)
7		Connection fault, system (E.02)
8		All other device faults (E.xx)
9	Fault location [%]	
10	U_{L+e}	U _n battery voltage ok
11	U_{L-e}	
12	Update counter	
13		
14		
15		

5.2 Data access using the Modbus RTU protocol

Requests to the ISOMETER® can be made using the function code 0x03 (read multiple registers) or the command 0x10 (write multiple registers). The ISOMETER® generates a function-related answer and sends it back.

5.2.1 Reading out the Modbus register from the ISOMETER®

The required Words of the process image can be read out from the ISOMETER® "Holding Registers" using function code 0x03. For this purpose, the start address and the number of the registers to be read out must be entered. Up to 125 Words (0x7D) can be read out with one single request.

Command of the master to the ISOMETER®

In the following example, the master of the ISOMETER® requests the content of register 1003 using address 3. The register contains the channel description of measuring channel 1.

Byte	Name	Example
Byte 0	ISOMETER® Modbus address	0x03
Byte 1	Function code	0x03
Byte 2, 3	Start address	0x03EB
Byte 4, 5	Number of registers	0x0001
Byte 6, 7	CRC16 checksum	0xF598

Answer of the ISOMETER® to the master

Byte	Name	Example
Byte 0	ISOMETER® Modbus address	0x03
Byte 1	Function code	0x03
Byte 2	Number of data bytes	0x02
Byte 3, 4	Data	0x0047
Byte 7, 8	CRC16 checksum	0x81B6

5.2.2 Writing the Modbus register (parameter setting)

Registers in the device can be modified with function code 0x10 (set multiple registers). Parameter registers start with address 3000. For the contents of the registers, see table in chapter 5.3.2.1.

The master sends a command to the ISOMETER®

In this example, address 3 is used to set the content of register address 3003 to 2.

Byte	Name	Example
Byte 0	ISOMETER® Modbus address	0x03
Byte 1	Function code	0x10
Byte 2, 3	Start register	0x0BBB
Byte 4, 5	Number of registers	0x0001
Byte 6	Number of data bytes	0x02
Byte 7, 8	Data	0x0002
Byte 9, 10	CRC16 checksum	0x9F7A

Response of the ISOMETER® to the master

Byte	Name	Example
Byte 0	ISOMETER® Modbus address	0x03
Byte 1	Function code	0x10
Byte 2, 3	Start register	0x0BBB
Byte 4, 5	Number of registers	0x0001
Byte 6, 7	CRC16 checksum	0x722A

5.2.3 Exception code

If the ISOMETER® cannot respond to a request, it will send an exception code with which possible faults can be narrowed down.

Exception code	Description	
0x01	Impermissible function	
0x02	Impermissible data access	
0x03	Impermissible data value	
0x04	Internal fault	
0x05	Acknowledgement of receipt (answer will be time-delayed)	
0x06	Request not accepted (repeat request if necessary)	

Structure of the exception code

Byte	Name	Example	
Byte 0	ISOMETER® Modbus address	0x03	
Byte 1	Function code (0x03) + 0x80	0x83	
Byte 2	Data (exception code)	0x04	
Byte 3, 4	CRC16 checksum	0xE133	

5.3 Modbus register assignment

5.3.1 Modbus measured value registers

Depending on the device condition, the information in the registers is the measured value without alarm, the measured value with alarm 1, the measured value with alarm 2, or the device error. For more information see, page 37.

Register	Without alarm	Alarm 1 [prewarning]	Alarm 2 [alarm]	Device error	
10001003	R _F Insulation fault (71)	R _F Insulation fault (1)	R _F Insulation fault (1)	Earth connection (102)	
10041007					
10081011	U _n Voltage (76)	U _n Overvoltage (78) [alarm]		Connection to system (101)	
10121015	C _e Capacitance (82)				
10161019	U _{L+e} Voltage (76)	<i>U</i> _n Undervoltage (77) [alarm]			
10201023	U _{L-e} Voltage (76)				
10241027	Fault location in % (1022)				
10281031					
10321035	Measured value update counter (1022)			Device error (115)	

⁽⁾ channel description code (see "Channel descriptions", page 39)

5.3.1.1 Measurement coding

Each measured value is available as a channel and consists of 8 bytes (4 registers). The first measured value register address is 1000. The structure of a channel is always the same. Content and number depend on the device. The structure of a channel is shown with the example of channel 1:

1000		1001		1002		1003	
HiByte	LoByte	HiByte	LoByte	HiByte	LoByte	HiByte	LoByte
Floating point value (Float)			Alarm type and test type (AT&T)	Range and unit (R&U)	Channel d	escription	

5.3.1.2 Float = Floating point value of the channels

Representation of the bit order for processing analogue measured values according to IEEE 754

Word		0x00								0x01																						
Byte	Г	HiByte				LoByte					HiByte						LoByte															
Bit	31	31 30 29 28 27 26 25 24			24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	S	E	Ε	Е	Е	Е	Ε	Е	Ε	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М

E exponent M mantissa

S sign

5.3.1.3 AT&T = Alarm type and test type (internal/external)

Bit	7	6	5	4	3	2	1	0	Meaning
	Test external	Test internal	Reserved	Reserved	Reserved	Alarm	Fault		
Alarm	Х	Х	Х	Х	Х	0	0	0	No alarm
type	Х	Х	Х	Х	Х	0	0	1	Prewarning
	0	0	Х	Х	Х	0	1	0	Device error
	Х	Х	Х	Х	Х	0	1	1	Reserved
	Х	Х	Х	Х	Х	1	0	0	Warning
	Х	Х	Х	Х	Х	1	0	1	Alarm
	Х	Х	Х	Х	Х	1	1	0	Reserved
	Х	Х	Х	Х	Х	1	1	1	Reserved
Test	0	0	Х	Х	Х	Х	Х	Х	No test
	0	1	Х	Х	Х	Х	Х	Х	Internal test
	1	0	Х	Х	Х	Х	Х	Х	External test

- Bits 0 to 2: coding for the alarm type
- Bits 3 to 5: reserved; value 0
- Bit 6 oder 7: set when an internal or external test is active

Other values are reserved. The complete byte is calculated from the sum of the alarm type and the test type.

5.3.1.4 R&U = Range and unit

Bit	7	6	5	4	3	2	1	0	Meaning
Unit	-	-	-	0	0	0	0	0	Invalid (init)
	-	-	-	0	0	0	0	1	No unit
	-	-	-	0	0	0	1	0	Ω
	-	-	-	0	0	0	1	1	Α
	-	-	-	0	0	1	0	0	V
	-	-	-	0	0	1	0	1	%
	-	-	-	0	0	1	1	0	Hz
	-	-	-	0	0	1	1	1	Baud
	-	-	-	0	1	0	0	0	F
	-	-	-	0	1	0	0	1	Н
	-	-	-	0	1	0	1	0	°C
	-	-	-	0	1	0	1	1	°F
	-	-	-	0	1	1	0	0	Second
	-	-	-	0	1	1	0	1	Minute
	-	-	-	0	1	1	1	0	Hour
	-	-	-	0	1	1	1	1	Day
	-	-	-	1	0	0	0	0	Month
Range of validity	0	0	Х	Х	Х	Х	Х	Х	Actual value
	0	1	Х	Х	Х	Х	Х	Х	The actual value is lower
	1	0	Х	Х	Х	Х	Х	Х	The actual value is higher
	1	1	Х	Х	Х	Х	Х	Х	Invalid value

[•] Bits 0 to 4: coding for the unit

The complete byte is calculated from the sum of the unit and the range of validity.

[•] Bits 6 and 7: validity range of a value

[•] Bit 5: reserved

5.3.1.5 Channel descriptions

Value	Description of measured value / message	Comments
0		
1 (0x01)	Insulation fault	
71 (0x47)	Insulation fault	Insulation resistance $R_{\rm F}$ in Ω
76 (0x4C)	Voltage	Measured value in V
77 (0x4D)	Undervoltage	
78 (0x4E)	Overvoltage	
82 (0x52)	Capacitance	Measured value in F
86 (0x56)	Insulation fault	Impedance Z _i
101 (0x65)	System connection	
102 (0x66)	Earth connection	
115 (0x73)	Device error	ISOMETER® fault
129 (0x81)	Device error	
145 (0x91)	Own address	

5.3.2 Modbus parameter register

5.3.2.1 Parameter coding

Register	Property	Description	Format	Unit	Value range
999	RO	Number of Modbus measured- value channels with active alarm	UINT 16		09
3000	RW	Reserved			
3001	RW	Prewarning value for resistance measurement "R1"	UINT 16	kΩ	R2 5000
3002	RW	Reserved			
3003	RW	Alarm value for resistance measurement "R2"	UINT 16	kΩ	10 R1
3004	RW	Reserved			
3005		U _{BatH} specified battery value, upper limit	UINT 16	V	U _{BatL} 500
3006	RW	Reserved			
3007	RW	U _{BatL} specified battery value, lower limit	UINT 16	V	3 <i>U</i> _{BatH}
3008	RW	Reserved			
3009	RW	U _{CrossH} cross fault upper limit	UINT 16	V	<i>U</i> _{CrossL} 500

Register	Property	Description	Format	Unit	Value range
3010	RW	Reserved	UINT 16		
3011	RW	U _{CrossL} cross fault lower limit	UINT 16	V	3 <i>U</i> _{CrossH}
3012	RW	Memory function for alarm messages (fault memory) "M"	UINT 16		0 = off 1 = on
3013	RW	Operating mode of relay K1 "r1"	UINT 16		0 = n/o 1 = n/c
3014	RW	Operating mode of relay K2 "r2"	UINT 16		0 = n/o 1 = n/c
3015	RW	Bus address "Adr"	UINT 16		0/390
3016	RW	Baud rate "Adr 1"	UINT 16		0 = BMS 1 = 1.2 k 2 = 2.4 k 3 = 4.8 k 4 = 9.6 k 5 = 19.2 k 6 = 38.4 k 7 = 57.6 k 8 = 115.2 k
3017	RW	Parity "Adr 2"	UINT 16		0 = 8N1 1 = 8O1 2 = 8E1 3 = 8N2
3018	RW	Start-up delay "t" during device start	UINT 16	S	010
3019	RW	Response delay "ton1" for relay "K1"	UINT 16	S	0 99
3020	RW	Delay on release "toff" for relays "K1" and "K2"	UINT 16	S	0 99
3021	RW	Repetition time "test" for automatic device test	UINT 16		0 = off 1 = 1 h 2 = 24 h
3022	RW	Reserved			
3023	RW	Reserved			
3024	RW	Test of the system connection during device test "nEt"	UINT 16		0 = off 1 = on
3025	RW	Device test during device start "S.Ct"	UINT 16		0 = off 1 = on
3026	RW	Request stop mode (0 = deactivate devices)	UINT 16		0 = Stop 1 =
3027	RW	Alarm assignment of relay K1 "r1"	UINT 16		Bit 10 Bit 1

Register	Property	Description	Format	Unit	Value range
3028	RW	Alarm assignment of relay K2 "r2"	UINT 16		Bit 10 Bit 1
3029	RW	Measuring pulse period duration	UINT 16	S	0 = auto 0.8 1 = auto 2.0 2 = 0.8 3 = 2.0 4 = 4.0 5 = 8.0
3030	RW	Response delay "ton2" for relay "K2"	UINT 16	S	0 99
8003	WO	Factory settings for all parameters	UINT 16		0x6661 "fa"
8004	wo	Factory setting only for parameters resettable by FAC	UINT 16		0x4653 "FS"
8005	WO	Start device test	UINT 16		0x5445 "TE"
8006	WO	Clear fault memory	UINT 16		0x434C "CL"
9800 9809	RO	Device name (ASCII)	UNIT 16		
9820	RO	Software identification number	UINT 16		
9821	RO	Software version number	UINT 16		
9822	RO	Software version: Year	UINT 16		
9823	RO	Software version: Month	UINT 16		
9824	RO	Software version: Day	UINT 16		
9825	RO	Modbus driver version	UINT 16		

RO Read only RW Read/Write WO Write only

5.3.2.2 Alarm assignment of the relays

Several messages and alarms can be assigned to each relay. For the assignment to each relay, a 16-bit register is used with the bits described below. The following table applies to relay K1 and relay K2, in which "x" stands for the relay number. A set bit activates the specified function.

Bit	Display indication	Meaning
0	Reserved	When reading: 0 When writing: any value
1	_ / Lx Err	Device error E.xx
2	rx +R1 < Ω	Prewarning R1 - Fault R _F at L+
3	rx –R1 < Ω	Prewarning R1 - Fault R _F at L—

Bit	Display indication	Meaning
4	rx +R2 < Ω	Alarm R2 - Fault R _F at L+
5	rx –R2 < Ω	Alarm R2 - Fault R _F at L–
6	rx U < V	Alarm message $U_{\rm n}$ - undervoltage
7	rx U > V	Alarm message $U_{\rm n}$ - overvoltage
8	rx U V	Message - battery voltage U_n is ok
9	rx test	Manually started self test
10	rx S.AL	Device start with alarm
11	Reserved	When reading: 0 When writing: any value
1215	Reserved	When reading: 0 When writing: any value

5.3.2.3 Device name

The data format of the device name consists of ten Words with two ASCII characters each.

0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09
0,000	0.001	0.02	0.00	J 0x04	0,000	0,000	0.007	0,00	0.009

5.4 IsoData data string

In IsoData mode the ISOMETER® sends the entire data string roughly once per second. Communication with the ISOMETER® in this mode is not possible and no additional sender may be connected via the RS-485 bus cable.

IsoData is activated in the menu "out", menu item "Adr", when Adr is set to 0. In this case, the "Adr" symbol flashes on the measured value display.

String	Description
!;	Start symbol
v;	Insulation fault location " " / "+" / "-"
123456;	Insulation resistance $R_{\rm F} [{ m k}\Omega]$
1234;	System leakage capacitance $C_{\rm e}$ [nF]
123456;	Reserved
+1234 ,5;	System voltage (DC) U_n [V]
+1234 ,5;	Residual DC voltage $U_{\text{L+e}}$ [V]
+1234 ,5;	Residual DC voltage $U_{\rm L-e}$ [V]
+123;	Insulation fault location –100 +100 [%]
1234;	Alarm message [hexadecimal] (without leading "0x") The alarms are included in this value with the OR function. Assignment of the alarms: $0x0002 \text{ device error} \\ 0x0004 \text{ Prewarning insulation resistance } R_F \text{ at L} + \\ 0x0008 \text{ Prewarning insulation resistance } R_F \text{ at L} + \\ 0x000C \text{ Prewarning insulation resistance } R_F \text{ symmetrical} \\ 0x0010 \text{ Alarm insulation resistance } R_F \text{ at L} + \\ 0x0020 \text{ Alarm insulation resistance } R_F \text{ at L} + \\ 0x0030 \text{ Alarm insulation resistance } R_F \text{ symmetrical} \\ 0x0040 \text{ Alarm message undervoltage } U_n \\ 0x0080 \text{ Alarm message overvoltage } U_n \text{ ox } 0x0100 \text{ Message battery voltage } U_n \text{ ox } 0x0200 \text{ Message system test} \\ 0x00200 \text{ Message system test} \\ 0x0400 \text{ Device start with alarm}$
12;	Update counter, consecutively counts from 0 to 99. It increases with the update of the insulation resistance value.
<cr><lf></lf></cr>	String end

6 Technical data

6.1 Technical data isoBAT425

()* = Factory settings

Insulation coordination acc. to IEC 60664-1/-3

	ons

Measuring circuit (IC1)	L+,L-
Supply circuit (IC2)	A1, A2
Output circuit (IC3)	11, 14, 24
Control circuit (IC4)	E, KE, T/R, A, B
Rated voltage	400 V
Overvoltage category	III

Rated impulse voltage

IC1/(IC2-4)	6 kV
IC2/(IC3-4)	4 kV
IC3/IC4	4 kV

Rated insulation voltage

IC1/(IC2-4)	400 V
IC2/(IC3-4)	250 V
IC3/IC4	250 V
Pollution degree	3

Safe isolation (reinforced insulation) between

IC1/(IC2-4)	Overvoltage category III, 600 V
IC2/(IC3-4)	Overvoltage category III, 300 V
IC3/IC4	Overvoltage category III, 300 V

Protective impedance device between

IC1/IC4	Overvoltage category III, 600 V

Voltage tests (routine test) acc. to IEC 61010-1

IC2/(IC3-4)	AC 2.2 kV
IC3/IC4	AC 2.2 kV

Supply voltage

Supply voltage $U_{\rm s}$	AC 100240 V / DC 24240 V
Tolerance of U _s	-30+15 %
Frequency range $U_{\rm s}$	4763 Hz
Power consumption	≤ 3 W, ≤ 9 VA
Monitored IT system	
Nominal system voltage $U_{\rm n}$	DC 0400 V
Tolerance of $U_{\rm n}$	+25 %
Measuring circuit	
Measuring voltage $U_{\rm m}$	±12 V
Measuring current $I_{\rm m} R_{\rm F}, Z_{\rm F} = 0 \Omega$	≤ 110 µA
Internal resistance $R_{i'}Z_i$	≥ 115 kΩ
Permissible system leakage capacitance $C_{\rm e}$	≤ 1 µF
Response values	
Response value R_{an1}	115000 kΩ (1500 kΩ)*
Response value R _{an2}	10…4900 kΩ (1000 kΩ)*
Relative uncertainty R _{an}	± 15 %, at least ± 2 k Ω
Hysteresis R _{an}	25 %, at least ± 1 kΩ
Voltage detection $U_{\rm BatH}$	4500 V (400 V)
Voltage detection $U_{\rm Batl.}$	3499 V (378 V)
Voltage detection U_{CrossH}	4500 V (345 V)
Voltage detection U_{CrossL}	3499 V (6 V)
Overvoltage detection	510 V
Relative uncertainty <i>U</i>	±5 %, at least ±0.5 V
Hysteresis <i>U</i>	5 %, at least 2 V

Time response

Response time t_{ae} at $R_F = 0.5 \times R_{an}$ for the measuring pulse period durations

$T_{\rm MP} = 0.8 \rm s$	≤ 3.5 s
$T_{MP} = 2 \text{ s}$	≤8s
$T_{\text{MP}} = 4 \text{ s}$	≤ 16 s
$T_{\text{MP}} = 8 \text{ s}$	≤ 32 s
Start-up delay t	010 s (0 s)*
Response delay t_{on}	099 s (0 s)*
Delay on release t _{off}	099 s (0 s)*

Displays, memory

Display	LC display, multi-functional, not illuminated
Display range measured value insulation resistance ($R_{\rm F}$)	1 kΩ10 MΩ
Operating uncertainty	± 15 %, at least ± 2 k Ω
Display range measured value system voltage (U_n)	DC 0500 V
Operating uncertainty	±5 %, at least ±0.5 V
Display range measured value system leakage capacitance at $R_{\rm F}\!>\!10~{\rm k}\Omega$	09.99 μF
Operating uncertainty	± 10 %, at least \pm 0.02 μF
Password	off / 0999 (off / 0)*
Fault memory alarm messages	on/(off)*

Interface

Interface / protocol	RS-485 / BMS, Modbus RTU, isoData
Baud rate	BMS (9.6 kbit/s), Modbus RTU (selectable), isoData (115.2 kbit/s)
Cable length(9.6 kbit/s)	≤ 1200 m
Cable: twisted pairs, shield connected to PE on one side	min. J-Y(St)Y 2 x 0.6
Terminating resistor	120 Ω (0.25 W), internal, can be connected
Device address, BMS bus, Modbus RTU	390 (3)*

Switching elements

Switching elements	2 x 1 n/o contacts, common terminal 11
Operating principle	n/c or n/o (n/o)*
Electrical endurance	10.000 cycles
Electrical endurance at DC 30 V $/ \le 0.1$ A (L/R = 7 ms)	10 ⁶ cycles
Contact data acc. to IEC 60947-5-1	
Utilisation category	AC-12 / AC-14 / DC-12 / DC-12 / DC-12
Rated operational voltage	230 V / 230 V / 24 V / 110 V / 220 V
Rated operational current	5 A / 2 A / 1 A / 0.2 A / 0.1 A
Minimum contact rating	1 mA at AC/DC ≥ 10 V
Environment/EMC	
EMC	IEC 61326-2-4
Ambient temperatures	
Operation	–25…+55 ℃
Transport	-40+85 °C
Storage	-40…+70 °C
Classification of climatic conditions acc. to IEC 60721	
Stationary use (IEC 60721-3-3)	3K22
Transport (IEC 60721-3-2)	2K11
Long-term storage (IEC 60721-3-1)	1K22
Classification of mechanical conditions acc. to IEC 60721	
Stationary use (IEC 60721-3-3)	3M11
Transport (IEC 60721-3-2)	2M4
Long-term storage (IEC 60721-3-1)	1M12
Other	
Operating mode	continuous operation
Operating mode Mounting	<u> </u>
· · ·	continuous operation cooling slots must be ventilated vertically IP30

Enclosure material	polycarbonate
DIN rail mounting acc. to	IEC 60715
Screw fixing	2 x M4 with mounting clip
Weight	≤ 150 g
6.2 Technical data ZE420 Insulation coordination acc. to IEC 60664-1/-3	
Definitions	
Measuring circuit (IC1)	L+, L-
Control circuit (IC2)	Е
Rated voltage	400 V
Overvoltage category	III
Rated impulse voltage	
IC1/IC2	6 kV
Rated insulation voltage	
IC1/IC2	400 V
Pollution degree	3
Protective impedance device between	
IC1/IC2	Overvoltage category III, 600 V
Monitored IT system	
Nominal system voltage $U_{\rm n}$	DC 0400 V
Tolerance of $U_{\rm n}$	+25 %
Environment/EMC	
EMC	IEC 61326-2-4
Ambient temperatures	
Operation	−25…+55 °C
Transport	−40…+85 °C
Storage	−40…+70 °C

Classification of climatic conditions acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3K22
Transport (IEC 60721-3-2)	2K11
Long-term storage (IEC 60721-3-1)	1K22

Classification of mechanical conditions acc. to IEC 60721

Stationary use (IEC 60721-3-3)	3M11
Transport (IEC 60721-3-2)	2M4
Long-term storage (IEC 60721-3-1)	1M12

Other

Operating mode	continuous operation
Mounting	cooling slots must be ventilated vertically
Degree of protection, built-in components (DIN EN 60529)	IP30
Degree of protection, terminals (DIN EN 60529)	IP20
Enclosure material	polycarbonate
DIN rail mounting acc. to	IEC 60715
Screw fixing	2 x M4 with mounting clip
Weight	≤ 150 g

6.3 Connection

Push-wire terminals

Nominal current	≤ 10 A
Conductor sizes	AWG 2414
Stripping length	10 mm
Rigid	0.22.5 mm ²
Flexible without ferrules	0.752.5 mm ²
Flexible with ferrules with/without plastic sleeve	0.252.5 mm ²
Multi-conductor flexible with TWIN ferrules with plastic sleeve	0.51.5 mm ²
Opening force	50 N
Test opening	Ø 2.1 mm

6.4 Standards and certifications

The ISOMETER® was developed in compliance with the standards specified in the Declaration of Conformity.

not for 7F420

EU Declaration of Conformity

Hereby, Bender GmbH & Co. KG declares that the device covered by the Radio Directive complies with Directive 2014/53/EU. The full text of the EU Declaration of Conformity is available at the following Internet address:

https://www.bender.de/fileadmin/content/Products/CE/CEKO_isoXX425.pdf

UKCA Declaration of Conformity

Hereby, Bender GmbH & Co. KG declares that this device is in compliance with Radio Equipment Regulations 2017 (S.I. 2017/1206). The full text of the UK declaration of conformity is available at the following internet address:

https://www.bender.de/fileadmin/content/Products/UKCA/UKCA_isoXX425.pdf

6.5 Ordering data

ISOMETER®

Model	Nominal system voltage <i>U</i> _n	Article number	
		Push-wire terminals	Screw-type terminals
isoBAT425-D4-4 mit ZE420	DC 0400 V	B71036327	
isoBAT425-D4-4	DC 0400 V	B71036324	
ZE420	DC 0400 V	B71036326	

Accessories

Description	Article number
Mounting clip for screw mounting	B98060008
XM420 mounting frame	B990994

6.6 Change log

Date	Document version	Valid from software version	State/Changes
09.2023	05	D0560 V1.xx	Editorial revision Transfer to SMC incl. new CI and new chapter structure Better separation of descriptive and instructional texts (function/operation) Standards: Link to website added. Term: "stop mode" instead of "stop function" Section "Manual self test" and "Stop mode": Information on interface adapted to German version.

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

Alle Rechte vorbehalten. Nachdruck und Vervielfältigung nur mit Genehmigung des Herausgebers.

All rights reserved. Reprinting and duplicating only with permission of the publisher. © Bender GmbH & Co. KG, Germany Subject to change! The specified standards take into account the edition valid until 09.2023 unless otherwise indicated.

