ISOMETER® IRDH375
Insulation monitoring device for unearthed AC, AC/DC and DC systems (IT systems)
ISOMETER® IRDH375

Insulation monitoring device for unearthed AC, AC/DC and DC systems (IT systems)

Device features

• Insulation monitoring for unearthed AC, AC/DC systems 0…793 V, DC 0…650 V
• Nominal voltage extendable via coupling device
• Two separately adjustable response values 1 kΩ…10 MΩ
• AMPPlus measurement method
• Automatic adaptation to the system leakage capacitance
• Info button to display device settings and the system leakage capacitance
• Continuous self monitoring, with automatic alarm message
• Automatic self test, selectable
• Connection for external kΩ indication
• Test and reset button
• Connection external test and reset button
• Two separate alarm relays with two potential-free changeover contacts
• N/O or N/C operation
• Alarm relay for system fault (N/C operation)
• Backlit LC display
• RS-485 interface
• Plug-in terminals

Appraisals

CE
EAC
UL

Product description

The ISOMETER® of the IRDH375(B) series is designed to monitor the insulation resistance of unearthed main circuits (IT systems) AC, AC/DC 0…793 V resp. DC 0…650 V. The AMPPlus measurement method meets the particular requirements of modern power supplies which often include rectifiers, converters, thyristor-controlled DC drives and directly connected DC components. In these systems often high leakage capacitances against earth occur due to interference suppression measures. The IRDH375(B) automatically adapts itself to the existing system conditions.

In combination with a coupling device, the devices can also be used for higher voltages. An external supply voltage allows de-energised systems to be monitored too.

Application

• AC, DC or AC/DC main circuits
• AC/DC main circuits with directly connected DC components, such as rectifiers, converters, and thyristor-controlled DC drives
• UPS systems, battery systems
• Heaters with phase control
• Installations including switch-mode power supplies
• IT systems including high leakage capacitances
• Coupled IT systems

Function

When the insulation resistance between the system conductors and earth falls below the set response value, the alarm relays switch and the alarm LEDs light up. Two separately adjustable alarm relays allow to distinguish between prewarning and alarm. The measured value is indicated on the LC display or an externally connectable measuring instrument. In this way any changes, for example when circuits are connected to the system, can be recognised easily. The fault message can be stored. The fault memory can be reset by pressing the reset button. By pressing the test button, the function of the device as well as the connections to system and earth can be tested. Pressing the Info button provides additional information, such as the existing system leakage capacitance or device settings.

The function of the device and the earth connections are monitored. When a fault occurs, the system fault relay switches and the alarm LED “system fault” lights up. The parameterisation of the device can be carried out via the LC display or the function buttons integrated in the front plate.

Device version IRDH375B

Device version IRDH375B includes the following additional functions:
• History memory with real-time clock to store all alarm messages with date and time stamp
• Electrically isolated RS-485 interface (BMS protocol) for communication with other Bender devices
• Isometer disconnecting relays for the operation of several ISOMETER®s in coupled IT systems
• Current output 0(4)…20 mA

Use in coupled IT systems

Only one ISOMETER® may be active when several IT systems are coupled. Isometer disconnecting relays and the control inputs F1/F2 integrated in version IRDH275B guarantee that only one ISOMETER® is active at any one time.

Measurement method

AMPPlus The IRDH375(B) uses the patented AMPPlus measurement method. This measurement method allows concise monitoring of modern power supply systems, also in case of extensive, directly connected DC components and high system leakage capacitances.

Standards

1 - “INFO” button: to query standard information
ESC button: back to the menu function
2 - “TEST” button: to call up the self test
Arrow up button: Parameter changes, scroll
3 - “RESET” button: to delete alarm and fault messages
Arrow down button: Parameter changes, scroll
4 - “MENU” button: to activate the menu system
Enter button: to confirm parameter changes
5 - Alarm LED 1, yellow, lights when the value falls below the set
response value R_{ALARM1}
6 - Alarm LED 2, yellow, lights when the value falls below the set
response value R_{ALARM2}
7 - Alarm LED, yellow, lights in case of fault in the connecting
leads to the system or to earth, or in case of system fault
8 - Transparent front plate cover (accessory)

Response times

<table>
<thead>
<tr>
<th>C_e [µF]</th>
<th>t_{an} [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Wiring diagram – rear view

1 - Rear view IRDH375
2 - Detachable terminal cover

Wiring diagram

1 - 3AC system
2 - 3NAC system
3 - AC system
4 - DC system
5 - Supply voltage U_s (see ordering information) via 6 A fuse;
 for UL and CSA applications, it is mandatory to use 5 A fuses.
6 - Alarm relay R_{ALARM1}
7 - Alarm relay R_{ALARM2}
8 - Alarm relay system fault
9 - External kΩ indication 0…400 µA or current output
 0(4)…20 mA (option).
10 - External reset button (N/C contact or wire jumper) when the
 terminals R1/R2 are open, the fault message will not be stored,
 provided that the memory has not been activated via the
 operating menu.
11 - External test button, if required
12 - STANDBY by means of the function input F1, F2:
 When the contact is closed, insulation measurement does
 not take place; system disconnection
13 - DIP switch, S1 “ON”- RS-485 terminated (120 Ω on),
 S2 - unassigned

* The terminal pairs 10, 11 and 12 must be wired galvanically
 isolate and must not have a connection to PE!
Ordering information

<table>
<thead>
<tr>
<th>RS-485 interface</th>
<th>Coupled IT systems</th>
<th>Output</th>
<th>1 - Supply voltage U_n</th>
<th>Type</th>
<th>Art. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>not applicable</td>
<td>external kΩ indication 0...400 µA</td>
<td>$88...264 V$</td>
<td>AC</td>
<td>B91065000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$77...286 V$</td>
<td>DC</td>
<td>B91065002</td>
</tr>
<tr>
<td>BMS</td>
<td>applicable</td>
<td>Current output 0(4...20 mA)</td>
<td>$88...264 V$</td>
<td>AC</td>
<td>B91065004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$77...286 V$</td>
<td>DC</td>
<td>B91065006</td>
</tr>
</tbody>
</table>

1) Absolute values
Device “Option-W” with increased shock and vibration resistance: Indicated by the letter “W” at the end of the order number.

Suitable system components

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>External kΩ measuring instruments</td>
<td>7204-1421</td>
<td>B986763</td>
</tr>
<tr>
<td>9604-1421</td>
<td>B986764</td>
<td></td>
</tr>
<tr>
<td>9620-1421</td>
<td>B986841</td>
<td></td>
</tr>
<tr>
<td>Coupling devices</td>
<td>AGH150W-4</td>
<td>B98018006</td>
</tr>
<tr>
<td>AGH204S-4</td>
<td>B914013</td>
<td></td>
</tr>
<tr>
<td>AGH520S</td>
<td>B913033</td>
<td></td>
</tr>
<tr>
<td>Transparent front plate cover IP65</td>
<td>144x72</td>
<td>B98060005</td>
</tr>
</tbody>
</table>

Wiring diagrams – IRDH375 connected to different types of coupling devices

ISOMETER® IRDH375 with coupling device AGH150W-4

ISOMETER® IRDH375 with coupling device AGH204S-4

ISOMETER® IRDH375 with coupling device AGH520S

1 - without rectifier $U_n = 3 AC 0...1650 V$ (DC max. 1000 V)
2 - with rectifier $U_n = 3 AC 0...1300 V$ (peak voltage downstream of the rectifier or intermediate circuit voltage of max. 1840 V)
Technical data

Insulation coordination acc. to IEC 60664-1
Rated insulation voltage AC 800 V
Rated impulse voltage/pollution degree 8 kV/3

Voltage ranges
IRDH375…:
Nominal system voltage U_n AC, 3/(N)AC 0…793 V*
Nominal frequency f_n (for $f < 50$ Hz see characteristic curve in the manual) 0,1…460 Hz
Nominal system voltage U_n DC 0…650 V*
IRDH375…-435:
Supply voltage U_S (also see nameplate) AC 88…264 V*
Frequency range f_S 42…460 Hz
Supply voltage U_S (also see nameplate) DC 77…286 V*
IRDH375…-427:
Frequency range f_S 42…460 Hz
Supply voltage U_S (also see nameplate) DC 19.2…72 V*

Response values
Response value R_{R1} (Alarm1) 1 kΩ/10 MΩ
Response value R_{R2} (Alarm2) 1 kΩ/10 MΩ
Relative uncertainty (20 kΩ…1 MΩ) (acc. to IEC 61557-8) ± 15 %
Relative uncertainty (1…20 kΩ) ±2 kΩ/±20 %
Relative uncertainty (1…10 MΩ) ±0.2 MΩ/±20 %
Response time t_{R1} at $R_I = 0.5 \times R_{an}$ and $C_\phi = 1 \mu F$ ≤ 5 s
Hysteresis (1…10 kΩ) ±2 kΩ
Hysteresis (10 kΩ…10 MΩ) 25 %

Measuring circuit
Measuring voltage U_{in} ≤ 40 V
Measuring current I_{in} at $R_I = 0 \Omega$ ≤ 220 µA
Internal DC resistance R_I ≥ 180 kΩ
Impedance Z_I at 50 Hz ≥ 180 kΩ
Permissible extraneous DC voltage U_{th} ≤ DC 1200 V
Permissible system leakage capacitance C_ϕ ≤ 500 µF
Factory setting 150 µF

Displays
Display, illuminated two-line display
Characteristics (number) 2 x 16
Display range measured value 1 kΩ/10 MΩ
Operating uncertainty (20 kΩ…1 MΩ) (acc. to IEC 61557-8) ±15 %
Operating uncertainty (1…20 kΩ) ±1 kΩ/±15 %
Operating uncertainty (1 MΩ…10 MΩ) ±0.1 MΩ/±15 %

Outputs/inputs
Test/reset button internal/external
Cable length test/reset button, external ≤ 10 m
Current output for measuring instrument SKMP (scale centre point = 120 kΩ):
Current output IRDH375 (load) 400 µA (≤ 12.5 kΩ)
Current output IRDH375B (load) 20 mA (≤ 500 kΩ)
Accuracy current output (1 kΩ…1 MΩ) related to the value indicated ±10 %, ±1 kΩ

Serial interface
Interface/protocol IRDH375 RS-485/ASCII
Interface/protocol IRDH375B RS-485/BMS
Connection terminals A/B
Cable length ≤ 1200 m
Cable (twisted in pairs, one end of shield connected to PE) recommended: J-YTSQ/Y min. 2 x ø 0.8
Terminating resistor 120 Ω (0.5 W)
Device address, BMS bus 1…30 (factory setting = 3)

Switching elements
Switching elements 3 changeover contacts
K1 (Alarm 1), K2 (Alarm 2), K3 (device error)
Operating principle K1, K2 (Alarm 1/Alarm 2) N/O or N/C operation
Factory setting (Alarm 1/Alarm 2) N/O operation
Operating principle K3 (device error) N/C operation
Electrical endurance, number of cycles 12000
Contact class II/A acc. to DIN IEC 60225 Part 0-20
Rated contact voltage AC 250 V/DC 300 V
Making capacity AC/DC 5 A
Breaking capacity 2 A, AC 230 V, cos phi = 0.4
0.2 A, DC 220 V, L/R = 0.04 s
Contact rating at DC 24 V ≥ 2 mA (50 mV)

Environment/EMC
EMC according to IEC 61326-2-4 Ed. 1.0
Shock resistance IEC 60068-2-27 (device in operation) 15 g/11 ms
Bumping IEC 60068-2-29 (transport) 40 g/6 ms
Vibration resistance IEC 60068-2-6 (device in operation) 1 g/10…150 Hz
Vibration resistance IEC 60068-2-6 (transport) 2 g/10…150 Hz
Ambient temperature (during operation) -10…+55 °C
Ambient temperature (during storage) -40…+70 °C
Climatic class acc. to IEC 60721-3-3 3K5

Connection
Connection screw-type terminals
Connection properties
rigid/flexible 0.2…4 mm²/0.2…2.5 mm²
flexible with ferrules without/plastic sleeve 0.25…2.5 mm²
Conductor sizes (AWG) 24…12

Other
Operating mode continuous operation
Mounting display-oriented
Distance to adjacent devices ≥ 30 mm
Degree of protection, internal components (DIN EN 60529) IP30
Degree of protection, terminals (DIN EN 60529) IP20
Type of enclosure X300, free from halogen
DIN rail mounting acc. to IEC 60715
Flammability class UL94 V-0
Documentation number D00124
Weight ≤ 510 g

Option "W"
Shock resistance IEC 60068-2-27 (device in operation) 30 g/11 ms
Bumping IEC 60068-2-29 (transport) 40 g/6 ms
Vibration resistance IEC 60068-2-6 1.6 mm/10…25 Hz
Ambient temperature, during operation -25…+70 °C
Ambient temperature for storage -40…+85 °C
Screw mounting 2 x M4

The data labelled with an * are absolute values
** = Under EMC test conditions in accordance with IEC 61326-2-4 the specified tolerances can double